Università della Svizzera italiana	Facoltà di scienze economiche	Istituto di microeconomia ed economia pubblica MecoP

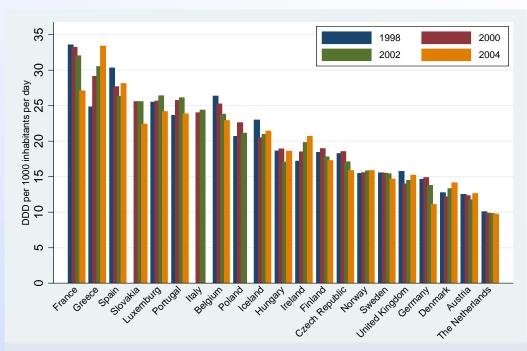
Characteristics of demand for antibiotics in primary care: an almost ideal model

AIES 2007

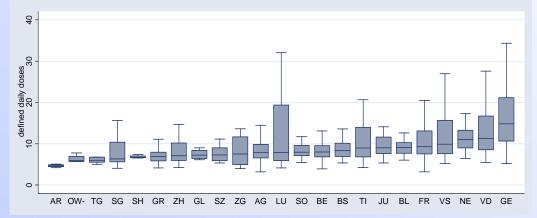
M. Filippini*+, G. Masiero*°, K. Moschetti*

* Department of Economics, University of Lugano + Swiss Federal Institute of Technology, Zurich, Switzerland * Department of Economics and Technology Management, University of Bergamo, Italy

Università Facoltà Istituto di della di scienze economiche microeconomia svizzera economiche pubblica MecoP


Objectives

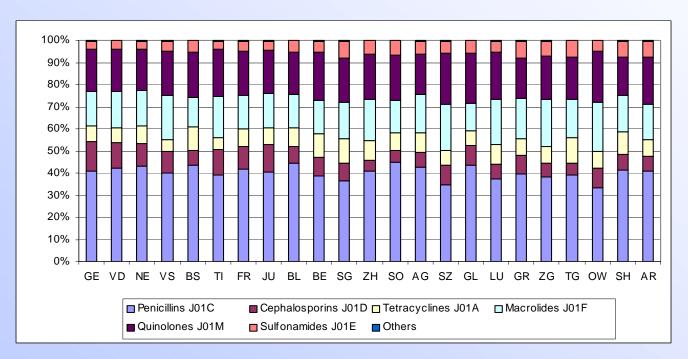
- Determinants of antibiotic consumption structure (local mix) in outpatient care
- Complementary and substitution
 between different antibiotic classes


di scienze economiche biblica MecoP

Motivation

Although antibiotic prescriptions have slightly decreased during the 90s and been roughly stable in recent years, prescribing practices still vary widely across countries (Elseviers et al. 2007)

Within-canton variations in the per capita antibiotics use, 2002


and within countries (Filippini et al., 2006b)

Istituto di microeconomia ed economia pubblica MecoP

Motivation

Regional heterogeneity in antibiotic mix within and between countries (Kern et al., 2006; Ferech et al., 2006; Elseviers et al., 2007). Optimal use?

Motivation

Physicians face tradeoffs (common respiratory infections):

1. Prescribe/delay antibiotic therapy under uncertainty of infection (viral/bacterial)

Università Facoltà Istituto di della di scienze microeconomia Svizzena economiche ed economia pubblica MecoP

- Substituting away some types of antibiotics with newer and more effective ones (broad vs. narrow spectrum). Variety may reduce resistance (Laxminarayan and Weitzman, 2002; Rowthorn and Brown, 2003)
- > Doctors` attitudes towards a group of antibiotics: strategies influenced by patients' characteristics, antibiotic price and economic incentives

della di scienze microeconomia Svizzera economiche ed economia Italiana MecoP

The literature

- \triangleright Resistance-induced antibiotic substitution (Howard, 2004). No evidence that bacterial resistance significantly varies at local level. Other determinants?
- > Demand for specific antibiotic classes (Ellison et al., 1997; Chaudhuri et al., 2003). Focus on two segments of the market: cephalosporins and quinolones. Chemist's view rather than physician's?
- > Determinants of regional and local heterogeneity in the use of antibiotics within countries (Filippini et al., 2006a; 2006b). Consumption structure?

Università Facoltà Istituto di della di scienze microeconomia Svizzera economiche ed economia italiana MecoP

The model

Almost Ideal Demand System (Ma and al., 2004; Lazaridis, 2004; Boetel and Liu, 2003) Two-stage budgeting approach (antibiotics vs. other types of goods > different categories of antibiotics)

Decisions of rationale physicians

Doctors concerned with the effectiveness of a broad category of antibiotics compared to another one. Choice among a limited set of antibiotic categories:

group 1
Penicillins (classic)
group 2
Penicillins (amoxiclav) and 1st-2nd generation cephalosporins
group 3
3rd generation cephalosporins and quinolones (more severe infections or
alternative to 2nd generation)
group 4
Macrolides (alternative to beta-lactams)

The model

Expenditure share of the ith group of antibiotics

$$w_{i} = \alpha_{i} + \sum_{j} \gamma_{ij} \log p_{j} + \beta_{i} \log(x/P) + \sum_{k=1}^{S} \nu_{ik} V_{k} + \sum_{l=1}^{L} \phi_{il} R_{l} + \sum_{t=1}^{T} \rho_{it} DT_{t} + u_{i},$$

Università Facc della di so Svizzera econ italiana

microeconomia ed economia pubblica MecoP

Additional **determinants** by a log-linear scaling procedure:

V _k	=	Demographic structure, cultural aspects (borderland location, language)
R ₁	=	Practice regulation (self-dispensing)
\dot{DT}_t	=	Time dummies

Data: short panel (2002 quarterly, 240 contiguous market areas)

Estimation: Zellner's Iterative Seemingly Unrelated Regression (SUR) procedure (classic penicillins dropped)

Estimation results

	and 1^{st} - 2^n	(amoxi/clav) ^{ad} generations osporins	3 rd genera cephalosp and quino	orins	Macrol	ides	
Obs.	960		960		960	960	
\mathbf{R}^2	0.262		0.369		0.387		
	Coeff.	S.E.	Coeff.	S.E.	Coeff.	S.E.	
Constant	0.758^{***}	0.073	0.211^{***}	0.056	0.211^{***}	0.071	
P_1	-0.021**	0.010	0.077^{***}	0.010	-0.050***	0.010	
P_2	0.248^{***}	0.027	-0.141***	0.018	0.086^{***}	0.022	
P_3	-0.141^{***}	0.018	0.031	0.023	0.032^{*}	0.019	
P_4	-0.086***	0.022	0.032^{*}	0.019	0.104^{***}	0.027	
x/P	-0.000	0.004	0.004	0.003	-0.013***	0.004	
POP_1	-0.008	0.028	0.035^{*}	0.021	-0.027	0.027	
POP_2	0.054^{**}	0.027	-0.025	0.020	0.006	0.026	
POP_4	0.032^{*}	0.018	-0.005	0.014	-0.004	0.018	
POP-	0.008	0.010	0.032^{***}	0.007	-0.037***	0.009	
DBOR	0.010	0.006	-0.005	0.005	-0.015^{**}	0.006	
DLAT	-0.015**	0.006	0.042^{***}	0.004	-0.025***	0.006	
SELF	-0.034***	0.006	-0.003	0.005	0.040^{***}	0.006	
DI_1	-0.039***	0.006	0.020^{***}	0.004	0.024^{***}	0.005	
DT_2	0.004	0.006	0.012^{***}	0.004	-0.037***	0.005	
DT_3	0.042^{***}	0.006	-0.007*	0.004	-0.050***	0.005	

* significant at 10%, ** significant at 5%, *** significant at 1%

Università Facoltà Isti della di scienze mit Svizzera economiche ed italiana Me

Main findings (determinants)

• Population characteristics

Elderly people increases the use of new cephalosporins/quinolones and reduces the use of macrolides

• Cultural aspects

The Latin culture is associated with a more substantial use of new cephalosporins/quinolones and macrolides and a lower proportion of penicillins amoxi/clav and cephalosporins I–II

• Regulation


Self-dispensing practices have a tendency to shift upward the demand for newer and more expensive antibiotics and to reduce the demand of traditional and less expensive antibiotics (penicillins amoxi/clav and cephalosporins I-II)

Università della Svizzera italiana	Facoltà di scienze economiche	Istituto di microeconomia ed economia pubblica MecoP

Main findings (own-price elasticity)

The highest own-price elasticity is found for the most expensive antibiotic category (group 3) and the traditional and less frequently used antibiotics (classic penicillins)

Università della Svizzera italiana

microeconomia ed economia pubblica

Università Facoltà Istituto di della di sienze economiche microeconomia svizzera economiche pubblica MecoP

Main findings (cross elasticities)

Complementary effects between antibiotics with a relative **narrow spectrum** and antibiotics with a relative **large spectrum**, and between **classic penicillins and macrolides**

Degree of **substitution** between other categories

Università Facoltà Istituto di della di sienze microeconomia Svizzera economiche pubblica MecoP

Discussion

Own-price elasticity:

Latest generation cephalosporins/quinolones used to reduce uncertainty Comparative advantage of traditional antibiotic therapy substantially undermined

Cross-price elasticity:

Switching to classic penicillins/macrolides rather than latest generations of cephalosporins/quinolones preferred

Patients' tastes > no switching between classic penicillins and macrolides

Istituto di microeconomia ed economia pubblica MecoP

Conclusions

Contribution

We propose a **model** of the demand for **antibiotics for respiratory infections** prescribed in **outpatient** care The approach includes **determinants** of the demand structure other than price, such as demographic and cultural characteristics of the population and practice self-dispensing status

Improvements

Data on the incidence of **bacterial resistance** at a local level

Policy implications

Local **taxation** of antibiotic components associated with levels of bacterial resistance may affect the antibiotic mix and, therefore, improve efficiency in consumption